Chapter 8

Eigenvalues and Eigenvectors, Diagonalization

8.1 INTRODUCTION

Consider an n-square matrix 4 over a field K. Recall (Section 4.13) that A induces a function
f: K" = K" defined by
(X)) =AX

where X is any point (column vector) in K" (We then view A as the matrix which represents the
function f relative to the usual basis E for K”.)
Suppose a new basis is chosen for K", say

S ={u, u;,..., u,}

(Geometrically, S determines a new coordinate system for K”.) Let P be the matrix whose columns are
the vectors u,, u,, ..., u,. Then (Section 5.11) P is the change-of-basis matrix from the usual basis E to
S. Also, by Theorem 5.27,

X' =P'X
gives the coordinates of X in the new basis S. Furthermore, the matrix
B= P 'AP

represents the function f in the new system §; that is, f(X') = BX".
The following two questions are addressed in this chapter:

(1) Given a matrix A, can we find a nonsingular matrix P (which represents a new coordinate system
S), so that

B=P 'AP

is a diagonal matrix? If the answer is yes, then we say that A is diagonalizable.

(2) Given a real matrix A, can we find an orthogonal matrix P (which represents a new orthonormal
system S) so that

B=P ‘AP
is a diagonal matrix ? If the answer is yes, then we say that A is orthogonally diagonalizable.

Recall that matrices 4 and B are said to be similar (orthogonally similar) if there exists a non-
singular (orthogonal) matrix P such that B= P "' AP. What is in question, then, is whether or not a
given matrix A is similar (orthogonally similar) to a diagonal matrix.

The answers are closely related to the roots of certain polynomials associated with A. The particu-
lar underlying field K also plays an important part in this theory since the existence of roots of the
polynomials depends on K. In this connection, see the Appendix (page 446).

8.2 POLYNOMIALS IN MATRICES
Consider a polynomial f(t) over a field K ; say

J@y=a "+ - +at+ag

280
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Recall that if A4 is a square matrix over K, then we define
JtA)=a, A"+ -+ a, A+ apl

where I is the identity matrix. In particular, we say that A is a root or zero of the polynomial f{t) if
J(A)=0.

1 2
Example 8.1. Let A =(3 4), and let f(z) = 2t — 3t + 7, g(t) = 1> — 5t — 2. Then
1 2\? 1 2 1 0 18 14
A) =2 -3 7 =
j (3 4) (3 4)+ (0 1) (21 39)
1 2\? 1 2 1 0 0 0
and g4) = —5( —2 =(
3 4 3 4 0 1/ \o o0
Thus A is a zero of g(t).

The following theorem, proved in Problem 8.26, applies.

Theorem 8.1: Let fand g be polynomials over K, and let A be an n-square matrix over K. Then
@) (S + glA) =1(A4) + g(4)
() (fgXA4) = f(A)g(A)
(iii) (YA = kf(A) for all ke K
(iv) f(A)g(A) = g(A)f(A)

By (iv), any two polynomials in the matrix A commute.

83 CHARACTERISTIC POLYNOMIAL, CAYLEY-HAMILTON THEOREM

Consider an n-square matrix A over a field K :

ayy 4y Qin

a a a
A =|% 22 2n

anl (%) aml

The matrix tI, — A, where I, is the n-square identity matrix and 7 is an indeterminate, is called the
characteristic matrix of A:

t—ay, ay; —a,

az; t—ay —

tl, — A= "
— Ay a,; t (27

Its determinant
A () =det (¢, — A)

which is a polynomial in ¢, is called the characteristic polynomial of A. We also call
A(t) =det (tI, — A) =0
the characteristic equation of A.
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Now each term in the determinant contains one and only one entry from each row and from each
column; hence the above characteristic polynomial is of the form

A)y=(—ay )t —ay,) - (t—a,
+ terms with at most n — 2 factors of the form t — g;;
Accordingly,

Aty =1t"—(ay, + a; + -+ a, )" ' + terms of lower degree

Recall that the trace of A is the sum of its diagonal elements. Thus the characteristic polynomial
A (1) = det (tI, — A) of A is a monic polynomial of degree n, and the coefficient of t" ! is the negative of
the trace of 4. (A polynomial is monic if its leading coefficient is 1.)

Furthermore, if we set t = 0 in A ,(t), we obtain

Af0)=]|— Al =(-1)]4|

But A (0) is the constant term of the polynomial A ,(t). Thus the constant term of the characteristic
polynomial of the matrix A is (—1)"| 4| where n is the order of A.
We now state one of the most important theorems in linear algebra (proved in Problem 8.27):

Cayley—Hamilton Theorem 8.2: Every matrix is a zero of its characteristic polynomial.

I 2
Example 8.2. lLetB = (3 2). Its characteristic polynomial is

t—1 =2

A=l -Bl=|"

=(t—-1t—2)—6=t*-3t—4

As expected from the Cayley—Hamilton Theorem, B is a zero of A(t):

7 -3 - -4 0
A(B)=32_33-41=(9 1(6))+(—9 —2)+( 0 —4)=(3 g)
Now suppose A and B are similar matrices, say B = P~ ' AP where P is invertible. We show that 4
and B have the same characteristic polynomial. Using t{ = P~ !tIP,

{tI —B|=|tI — P YAP| =|P “tIP — P ' AP|
=|P Yl — AP|=|P ||t~ A||P|

Since determinants are scalars and commute, and since | P™'|| P] = 1, we finally obtain

|t — B|=|tI — A]

Thus we have proved

Theorem 8.3: Similar matrices have the same characteristic polynomial.

Characteristic Polynomials of Degree Two and Three

Let A be a matrix of order two or three. Then there is an easy formula for its characteristic poly-
nomial A(t). Specifically:

a
(1) Suppose A = ( 1 a”). Then
G421 433
a;, Gy

A() = 12 — (a,, + ay)t + =12 — (tr A)t + det (A)

21 822
(Here tr A denotes the trace of A, that is, the sum of the diagonal elements of A4.)
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ayy Gy Gy
(2) Suppose A =|a;; a,; a,3) Then

dyy Q3 Aajzy

ayy Gy Qg3
4z, Az Ay Qg3 4y 4y
t— |Gz Q3 Q33

A3y dsz; 433

Al) =13 — (), + ay; + a3}t + (
4y Qaz;

Azz Q3s as; Qs
=13 —(tr A)? + (A, + Azz + Aja)t — det (4)
(Here A,,, A,,, A3; denote, respectively, the cofactors of the diagonal elements a, ,, a,;, a33.)
Consider again a 3-square matrix A = (g;;). As noted above,
S,=trA S, =A;, + Ay, + Ass S,y =det (A)

are the coefficients of its characteristic polynomial with alternating signs. On the other hand, each S, is
the sum of all the principal minors of A of order k. The next theorem, whose proof lies beyond the scope
of this Outline, tells us that this result is true in general.
Theorem 8.4: Let A be an n-square matrix. Then its characteristic polynomial is

AR =1"— S, "'+ S,0" 7 — -+ (- 1)S,

where S, is the sum of the principal minors of order k.

Characteristic Polynomial and Block Triangular Matrices

A, B .
where A, and A, are square matrices.

Suppose M is a block triangular matrix, say M = ( 0 A
2

Then the characteristic matrix of M,

tl — -
tI— M= As B
0 -4,

is also a block triangular matrix with diagonal blocks tI — A, and tI — A,. Thus, by Theorem 7.12,

ti—A4, —B

tI-M| =
I ! 0 tI — A,

= [tI — Aj]|t] — Ay

That is, the characteristic polynomial of M is the product of the characteristic polynomials of the
diagonal blocks A4, and A,.
By induction, we obtain the following useful result.

Theorem 8.5: Suppose M is a block triangular matrix with diagonal blocks 4, 4,, ..., A,. Then the
characteristic polynomial of M is the product of the characteristic polynomials of the
diagonal blocks 4,, that is,

Aplt) = B4, (DA ,(1) - A, (D)

Example 8.3. Consider the matrix

9 —1' 5 7
M = _8____3_:__3____4_
0 0, 3 6
0 0:-1 8
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9 -1 3 6
Then M is a block triangular matrix with diagonal blocks A = (8 3) and B = ( 1 8)' Here

trA=9+3=12 det (A) =27 + 8 =35 and so A =212t +35=0 -5 -7
trB=3+8=11 det (By=24 + 6 =30 and so Aglt)y =1* — L1t + 30 = (t — 5)t — 6)
Accordingly, the characteristic polynonual of M is the product

Ap) = A (DAL =t — 52t — 6t — N

84 EIGENVALUES AND EIGENVECTORS

Let A be an n-square matrix over a field K. A scalar 4 € K is called an eigenvalue of A if there exists
a nonzero (column) vector v € K" for which

Av = Av

Every vector satisfying this relation is then called an eigenvector of A belonging to the eigenvalue A
Note that each scalar multiple kv is such an eigenvector since

A(kv) = k(Av) = k(Av) = A(kv)

The set E; of all eigenvectors belonging to 4 is a subspace of K" (Problem 8.16), called the eigenspace of
A (If dim E; = 1, then E; is called an eigenline and 4 is called a scaling factor.)

The terms characteristic value and characteristic vector (or proper value and proper vector) are some-
times used instead of eigenvaluc and eigenvector.

1 2 . .
Example 8.4. Let A = (3 2) and let v, =(2,3)" and v, = (1, — 1)". Then

o 90-(9-0)-
e Ao

Thus ¢, and v, are eigenvectors of A belonging, respectively, to the eigenvalues 1, =4 and 4, = —1 of A.

and

The following theorem, proved in Problem 828, is the main tool for computing eigenvalues and
eigenvectors (Section 8.5).

Theorem 8.6: Let A be an n-square matrix over a field K. Then the following are equivalent:
(1) A scalar A € K is an eigenvalue of A.
(ii) The matrix M = Al — A is singular.
(iii) The scalar 4 is a root of the characteristic polynomial A(t) of A.

The eigenspace E, of 1 is the solution space of the homogeneous system MX = (Al — A)X = 0.
Sometimes it is more convenient to solve the homogeneous system (4 — AI)X = Q; both systems, of
course, yield the same solution space.

Some matrices may have no eigenvalues and hence no eigenvectors. However, using the Fundamen-

tal Theorem of Algebra (every polynomial over C has a root) and Theorem 8.6, we obtain the following
result.
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Theorem 8.7: Let A be an n-square matrix over the complex field C. Then A has at least one eigen-
value.

Now suppose A is an eigenvalue of a matrix A. The algebraic multiplicity of A is defined to be the
multiplicity of 4 as a root of the characteristic polynomial of A. The geometric multiplicity of 4 is defined
to be the dimension of its eigenspace.

The following theorem, proved in Problem 10.27, applies.

Theorem 8.8: Let A be an eigenvalue of a matrix A. Then the geometric multiplicity of 4 does not
exceed its algebraic multiplicity.

Diagonalizable Matrices

A matrix A is said to be diagonalizable (under similarity) if there exists a nonsingular matrix P such
that D = P~ AP is a diagonal matrix, i.e,, if 4 is similar to a diagonal matrix D. The following theorem,
proved in Problem 8.29, characterizes such matrices.

Theorem 8.9: An n-square matrix A is similar to a diagonal matrix D if and only if A has n linearly
independent eigenvectors. In this case, the diagonal elements of D are the corresponding
eigenvalues and D = P ' AP where P is the matrix whose columns are the eigenvectors.

Suppose a matrix A4 can be diagonalized as above, say P~'AP = D where D is diagonal. Then A
has the extremely useful diagonal factorization
A=PDP!

Using this factorization, the algebra of A4 reduces to the algebra of the diagonal matrix D which can be
easily calculated. Specifically, suppose D = diag (k,, k,, ..., k,). Then

A™ = (PDP YY" = PD"P™! = P diag (KT, ..., k") P!
and, more generally, for any polynomial f{(z),
f(A) =f(PDP™") = Pf(D)P™! = P diag (f(ky), ..., flk,) P™"

Furthermore, if the diagonal entries of D are nonnegative, then the following matrix B is a “square

root” of A:
B = P diag (\/ky, ..., Jk)P*
that is, B2 = A.
. . 1 2 . . .
Example 8.5. Consider the matrix 4 = 3 5} By Example 8.4, A has two linearly independent eigenvectors
2 1 2 1 S T L . .
3 and ) Set P = 3 1/ andso P7! = 3 -3/ Then A is similar to the diagonal matrix

B=P“AP=(§ _z)(; i)(i —::)=(g —(1))

As expected, the diagonal elements 4 and —1 of the diagonal matrix B are the eigenvalues corresponding to the
given eigenvectors. In particular, A has the factorization

R (W
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Accordingly,

2 1Y/ 256 0
4 _ 4p-1 _
A ) G |

/103 102
—2) \153 154
Furthermore, if f(f) = t* — 7t + 9t — 2, then

B L (2 ry-14 oy: N (17 2
fiay = FADIF '( —1 0o -9\ -2 3 16

Remark: Throughout this chapter, we use the fact that the inverse of the matrix

/ Ny
P=(a 5) is the matrix P ‘=( d\ P bllpl)
c

w

—cfiP]  ajiP|

That is, P~! is obtained by interchanging the diagonal elements a and d of P, taking
the negatives of the nondiagonal elements b and ¢, and dividing each element by the
determinant | P|.

The following two theorems, proved in Problems 8.30 and 8.31, respectively, will be subsequently
used.

Theorem 8.10: Let v, ..., v, be nonzero eigenvectors of a matrix A belonging to distinct eigenvalues
Ais---sAy. Then vy, ..., v, are linearly independent.

Theorem 8.11: Suppose the characteristic polynomial A(t) of an n-square matrix A4 is a product of n
distinct factors, say, A(t) = (t — a,{t — a;) -+ (t — a,). Then A is similar to a diagonal
matrix whose diagonal elements are the a;.

85 COMPUTING EIGENVALUES AND EIGENVECTORS, DIAGONALIZING MATRICES

This section computes the eigenvalues and eigenvectors for a given square matrix A and determines
whether or not a nonsingular matrix P exists such that P~ ' 4P is diagonal. Specifically, the following
algorithm will be applied to the matrix A.

Diagonalization Algorithm 8.5:

The input is an n-square matrix A.
Step 1. Find the characteristic polynomial A(t) of A.
Step 2. Find the roots of A(z) to obtain the eigenvalues of A.

Step 3. Repeat (a) and (b) for each eigenvalue 4 of A4:

(@) Form M = A — Al by subtracting 2 down the diagonal of A4, or form M' = il - A by
substituting t = Ain t — A.

(b) Find a basis for the solution space of the homogeneous system MX = 0. (These basis
vectors are linearly independent eigenvectors of 4 belonging to 4.)

Step 4. Consider the collection S = {v,, v,, ..., v,,} of all eigenvectors obtained in Step 3:
{a) If m # n, then A is not diagonalizable.
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(b) Ifm = n,let P be the matrix whose columns are the eigenvectors vy, v, ..., v,. Then

A
D=P AP = A2

A

where 4; is the eigenvalue corresponding to the eigenvector v;.

4 2
Example 8.6. The Diagonalization Algorithm is applied to A = ( 3 1).

1. The characteristic polynomial A(z) of A is the determinant

-4 -1

=t -3 —-10=(t - 2
-3 t+1 ! (t =3 +2)

1
A(t)=|tI-—A|='

Alternatively,tr A =4 — 1 =3 and |[A]= —4 — 6 = —10;s0 A(t) = t2 — 3t — 10.

2. SetA(t) =(t — 5Kt + 2) = 0. The roots A, = Sand A, = —2 are the eigenvalues of A.

3.0

(i)

We find an eigenvector v, of A belonging to the eigenvalue 1, = 5.

. . . -1 2 )
Subtract 4, = 5 down the diagonal of A to obtain the matrix M =( ) The eigenvectors

3 -6
belonging to A; = 5 form the solution of the homogeneous system MX = (, that is,

-1 2\(x\ (0O or —x+2y=0 or 2y 0
3 —eMN\y) " \o 3x — 6y =0 xra=

The system has only one independent solution; for example, x =2, y = 1. Thus v, = (2, 1) is an eigen-
vector which spans the eigenspace of 4, = 5.

We find an eigenvector v, of A belonging to the eigenvalue 1, = —2.
6 2
Subtract —2 (or add 2) down the diagonal of A to obtain M = ( 3 l) which yields the homoge-

neous system

6x+2y=0
3 =0
{ x4+ y=0 or x +y
The system has only one independent solution; for example, x = —1, y = 3. Thus v, =(—1, 3) is an
eigenvector which spans the eigenspace of 1, = — 2.

2 -1
4. Let P be the matrix whose columns are the above eigenvectors: P == (l 3). Then P™! = ( ? Z) and
-7 ¥

D=

P~ 1AP is the diagonal matrix whose diagonal entries are the respective eigenvalues:

WS i i N

Accordingly, 4 has the “diagonal factorization”

A=PDP'= (? _;)((5) —(2))(~i jzir)

I f(t) = t* — 4> — 31* + 5, then we can calculate f(5) = 55, f(—2) = 41; thus

) (2 -ryss o oy 3 A\ _(s3 4
m=ror=(0 0 D D=5 )
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Example 8.7. Consider the matrix B = (—i ;) Here tr B=5+1=6 and |B|=5+4=9. Hence
A(t) = 12— 61 + 9 = (1 ~ 3)2 is the characteristic polynomial of B. Accordingly, A = 3 is the only eigenvalue of B.
Subtract 4 = 3 down the diagonal of B to obtain the matrix M = (_i _;) which corresponds to the
homogeneous system
{_iztzizg or 2x+y=0
The system has only one independent solution; for example, x = 1, y = —2. Thus v = (1, —2) is the only indepen-

dent eigenvector of the matrix B. Accordingly, B is not diagonalizable since there does not exist a basis consisting
of eigenvectors of B.

2
Example 8.8. Consider the matrix A = (l 5

A(f) = 1* + 1 is the characteristic polynomial of 4. We consider two cases:

). Here tr A=2—-2=0 and |A|=—-4+5=1 Thus

(@ A is a matrix over the real ficld R. Then A(t) has no (real) roots. Thus A has no eigenvalues and no eigen-
vectors, and 50 A is not diagonizable.

(b) A is a matrix over the complex field C. Then A(f) = (¢ — i)t + i) has two roots, i and —i. Thus A has two
distinct eigenvalues i and —i, and hence A has two independent eigenvectors. Accordingly, there exists a
nonsingular matrix P over the complex field C for which

P7iAP = (i 0)
0 —i

Therefore, A is diagonalizable (over C).

86 DIAGONALIZING REAL SYMMETRIC MATRICES

There are many real matrices 4 which are not diagonalizable. In fact, some such matrices may not
have any (real) eigenvalues. However, if A is a real symmerric matrix, then these problems do not exist.
Namely:

Theorem 8.12: Let A be a real symmetric matrix. Then each root 4 of its characteristic polynomial is
real.

Theorem 8.13: Let A be a real symmetric matrix. Suppose u and v are nonzero cigenvectors of A
belonging to distinct eigenvalues A, and A,. Then u and v are orthogonal, ie,
{u, vy = 0.

The above two theorems gives us the following fundamental result:

Theorem 8.14: Let A be a real symmetric matrix. Then there exists an orthogonal matrix P such that
D = P~ ' AP s diagonal.

We can choose the columns of the above matrix P to be normalized orthogonal eigenvectors of A;
then the diagonal entries of D are the corresponding eigenvalues.

2 -2
-2 5
trA=2+5=7and|A4|=10—4 = 6. Hence Alt) = t> — 7t + 6 = (t — 6}t — 1) is the characteristic polynomial
of A. The eigenvalues of A4 are 6 and 1. Subtract 4 = 6 down the diagonal of A to obtain the corresponding
homogeneous system of linear equations

Example 8.9. Let A4 =( ) We find an orthogonal matrix P such that P 'AP is diagonal. Here

—4x -2y=0 —2x—y=0
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A nonzero solution is v, = (1, —2). Next subtract 4 = 1 down the diagonal of 4 to find the corresponding homo-
geneous system
+x—2y=0 —2x+4y =0

A nonzero solution is (2, 1). As expected from Theorem 8.13, v, and v, are orthogonal. Normalize v, and v, to

obtain the orthonormal vectors
uy = (/5 ~2//5) Uy = (24/5, 1//5)

Finally let P be the matrix whose columns are u, and u,, respectively. Then

=( N5 2/‘/5) and P—‘AP=(6 0)

-2//5 11/5 0 1

As expected, the diagonal entries of P~ ! AP are the eigenvalues corresponding to the columns of P.
Application to Quadratic Forms

Recall (Section 4.12) that a real quadratic form ¢(x,, x,, ..., X,) can be expressed in the matrix form

qX)=XTAX
where X = (x,, ..., x,)7 and A is a real symmetric matrix, and recall that under a change of variables
X = PY, where Y = (y,, ..., y,) and P is a nonsingular matrix, the quadratic form has the form

q(Y) = YTBY

where B = PTAP. (Thus B is congruent to A4.)

Now if P is an orthogonal matrix, then P* = P~ . In such a case, B= PTAP = P 'AP and so B is
orthogonally similar to 4. Accordingly, the above method for diagonalizing a real symmetric matrix A4
can be used to diagonalize a quadratic form g under an orthogonal change of coordinates, as follows.

Orthogonal Diagonalization Algorithm 8.6:

The input is a quadratic form g(X).
Step 1. Find the symmetric matrix 4 which represents ¢ and find its characteristic polynomial A(t).
Step 2. Find the eigenvalues of A4, which are the roots of A(t).
Step 3. For each eigenvalue 4 of A in Step 2, find an orthogonal basis of its eigenspace.
Step 4. Normalize all eigenvectors in Step 3 which then forms an orthonormal basis of R".
Step 5. Let P be the matrix whose columns are the normalized eigenvectors in Step 4.

Then X = PY is the required orthogonal change of coordinates, and the diagonal entries of PT AP
will be the eigenvalues 4,, ..., 4, which correspond to the columns of P.

87 MINIMUM POLYNOMIAL

Let A be an n-square matrix over a field K and let J(A4) denote the collection of all polynomials f(r)
for which f(A) = 0. [Note J(A) is not empty since the characteristic polynomial A () of 4 belongs to
J(A).] Let m(t) be the monic polynomial of minimal degree in J(A). Then m(t) is called the minimum
polynomial of A. [Such a polynomial m(t) exists and is unigue (Problem 8.25).]

Theorem 8.15: The minimum polynomial m(t) of A divides every polynomial which has A4 as a zero. In
particular, m(r) divides the characteristic polynomial A(z) of A.

(The proof is given in Problem 8.32.) There is an even stronger relationship between m(t) and A(2).
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Theorem 8.16: The characteristic and minimum polynomials of a matrix 4 have the same irreducible
factors.

This theorem, proved in Problem 8.33(b), does not say that m(r) = A(t); only that any irreducible
factor of one must divide the other. In particular, since a linear factor is irreducible, m(t) and A(r) have
the same linear factors; hence they have the same roots. Thus we have:

Theorem 8.17; A scalar A is an eigenvalue of the matrix A4 if and only if 1 is a root of the minimum
polynomial of A.

2 2 -5
Example 8.10. Find the minimum polynomial m(t) of A ={ 3 7 —15).
I 2 -4
First find the characteristic polynomial A(f) of A:
t—2 =2 5
A=t —A|l=]| =3 t—7 15 |=2=-52+N-3=0¢—-D}t-3)

-1 -2 t+4

Alternatively, A(t) =3 —(tr A)® + (A,, + A3 + A3t — |A| =12 =52 + 7t — 3 = (t — 1)*(t — 3) (where A is
the cofactor of g; in A).

The minimum polynomial m(t) must divide A(t). Also, each irreducible factor of A(r), that is, ¢t — 1 and ¢ — 3,
must also be a factor of m(t). Thus m(t) is exactly only of the following:

fO=0-~3Nt~1) or gty=@—3N-1)?
We know, by the Cayley—Hamilton Theorem, that g(4) = A(A4) = 0; hence we need only test f(t). We have

1 2 =5\/-1 2 =5 0 0 0
A =(A-DA-3)=|3 6 —15 3 4 —15]={0 0 0
1 2 =5 1 2 -7 0 0 0

Thus f(t) = m(t) = (t — It — 3) = t? — 4t + 3 is the minimum polynomial of A.

Example 8.11. Consider the following n-square matrix where a # 0:

A a O 00
0 4 0 0
M=l
00 0 ... A a
00 0 ... 0 4

Note that M has A’s on the diagonal, a’s on the superdiagonal, and Os elsewhere. This matrix, especially when
a = 1, is important in linear algebra. One can show that

JB=@—4r
is both the characteristic and minimum polynomial of M.
Example 8.12. Consider an arbitrary monic polynomial f(tf) =" +a,_,t" ' +--- + a,t + a,. Let A be the

n-square matrix with 1s on the subdiagonal, the negatives of the coeflicients in the last column and Os elsewhere as
follows:

00 ...0 —a
1 0 0 —aq
A=}0 1 0 —a,
00 1 —
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Then A is called the companion matrix of the polynomial f(f). Moreover, the minimum polynomial m(f) and the
characteristic polynomial A(t) of the above companion matrix A are both equal to f(¢).

Minimum Polynomial and Block Diagonal Matrices
The following theorem, proved in Problem 8.34, applies.

Theorem 8.18: Suppose M is a block diagonal matrix with diagonal blocks A,, 4,, ..., A4,. Then the
minimum polynomial of M is equal to the least common multiple (LCM) of the
minimum polynomials of the diagonal blocks 4;.

Remark: We emphasize that this theorem applies to block diagonal matrices,
whereas the analogous Theorem 8.5 on characteristic polynomials applies to block
triangular matrices.

Example 8.13. Find the characteristic polynomial A(r) and the minimum polynomial m(t) of the matrix

00

b
It
=]
=]
O w s OO

0
2
5
0

~N O OO

Note A is a block diagonal matrix with diagonal blocks

25 4 2
A1:(0 2) A2=(3 5) A3 =(7)

Then A(1) is the product of the characteristic polynomials A;(t), A,(t), and A,(¢) of 4;, A,, and A5, respectively.
Since A, and A, are triangular, A, (1) = (t — 2)* and A,(t) = (1 — 7). Also,

Ay =12 —(tr A,p + A==+ 14 =0t —2t—7)

Thus A(t) = (¢t — 2)*(t — 7)*. [As expected, deg A(t) = 5.]
The minimum polynomials m,(t), m,(t), and ma(¢) of the diagonal blocks A,, A,, and A;, respectively, are equal
to the characteristic polynomials; that is,

my(t) = (2 — 2)? my(t) = (t — 2)t — 7) myt)y=1—7

But m(1) is equal to the least common multiple of m,(t), my(t), m4(t). Thus m{t) = (t — 2%t — 7).

Solved Problems
POLYNOMIALS IN MATRICES, CHARACTERISTIC POLYNOMIAL

81. LetA= (; _i) Find f(A) where: (a) f(t) = t* — 3t + 7, and (b) f(t) = t* — 61 + 13.

— 42 _ (-2 1 -2 1 0
(@ f(A)=A 3A+71—(4 5) 34 5 +70 |
_(—7 —12 -3 6\ (1 0\_(-3 -6
T\ 2 17 Lo —is o 7/ \L12 o9
_ a2 (=7 —12 —6 12 13 0
(b fA)=A4 6A+131—(24 ) I CEPSRoY R (R

[Thus A is a root of f(t).]

e
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2 =3
8.2. Find the characteristic polynomial A(t) of the matrix A = ( s 1),

Form the characteristic matrix (I — A:

gt O (-2 3\_(-2 3
=lo /s —1)7\ -5 -1

The characteristic polynomial A(t) of A is its determinant:

t—2

A =|d—Al=|

, 3ll:(t_z)(z~1)+15=t2—3t+17

Alternatively, tr A=2+ 1 =3and|A| =2 + 15=17; hence A(t) = * — 3t + 17.

1 6 —2
8.3.  Find the characteristic polynomial A(t) of the matrix A ={ —3 2 0}
0 3 -4
t—1 -6 2
A)=|tI —Al=] 3 t—=2 0 |=(@—=1)t—2)+8)—18+ 18 +4)=1>+1"— 8 +62
0 -3 t+4
. 2 0 1 -2 1 6
Alternatively, tr A=1+2—-4=—1, A, = 3 —4|" —8, Ay = 0o —4| —4 Ay = -3 2{"

24+18=20,A,, + Ayy+ Ay3= —8—4+20=8 and|A| = —8 + 18 — 72 = —62. Thus
Aty =1>—(tr A2+ (Ayy + Az + Azt — Al =3 +12 — 8t + 62

84. Find the characteristic polynomials of the following matrices:

1 2 3 4 2 s 7 -9
0 2 8 —6 1 4 -6 4

R = =
@ 0 0 3 -5 ® S=lg o 6 —s
0o 0 o0 4 o 0 2 3

{a) Since R is triangular, A(f) = (¢ — 1)t — 2}t — 3)1t — 4).

2 5 6 —5
(b)) Note S is block triangular with diagonal blocks 4, = (l 4) and A, = ( 9 ) Thus

A(t) = A, (DA (1) = (¢* — 6t + 3)t* — 9t + 28)

EIGENVALUES AND EIGENVECTORS

1 4
85 LetA= ( N 3). Find: (a) all eigenvalues of 4 and the corresponding eigenspaces, (b) an invert-

ible matrix P such that D=P 'AP is diagonal, and (c) A% and f(4) where
fl)=1* =3t — 7> + 6t — 15.

(@) Form the characteristic matrix tI — A of A:

”_A_(t 0) (1 4 [(1—-1 -4 ;
_Ot_23_(—2t—3 @
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8.6.

The characteristic polynomial A(t) of A is its determinant :

—4

t—1
A(t)=|tl—A|=| 5 3

=2 -4 —5=@—-5N+1)

Alternatively, tr A =1+3=4 and |A] =3 — 8 = —5, so A(t) =t* — 4t — 5. The roots i, = 5 and

A, = —1 of the characteristic polynomial A(t) are the eigenvalues of 4.
We obtain the eigenvectors of A belonging to the eigenvalue 4, = 5. Substitute ¢t = 5 in the char-
4 —4
acteristic matrix (/) to obtain the matrix M = ( 2 2). The eigenvectors belonging to 4, = 5 form

the solution of the homogeneous system MX = 0, that is,

4 —4\/x 0 4x —4y =0
= or or x—-y=0
-2 2y 0 —2x+2y=0

The system has only one independent solution; for example, x = 1, y = 1. Thus v, = (1, 1) is an eigen-
vector which spans the eigenspace of 2, = 5.

We obtain the eigenvectors of A belonging to the eigenvalue 4, = —1. Substitute t = —1 into
-2 —4
tI — Ato obtain M = ( ) 4) which yields the homogeneous system
—2x—4y =0
+2y=0
{—2):—4}’:0 o xTay

The system has only one independent solution; for example, x =2, y = —1. Thus v, = (2, —1) is an
eigenvector which spans the eigenspace of 4, = —1.

2

|
(b) Let P be the matrix whose columns are the above eigenvectors: P = ( ;

). Then D= P AP is

the diagonal matrix whose diagonal entries are the respective eigenvalues:

) 2\/1 4\/1 2 5 0
_ p-1 _ 3 3 _
p=rar (z‘: —%)(2 3)(1 —1) (o _1)

{Remark: Here P is the change-of-basic matrix from the usual basis E of R? to the basis § = [v,, v,}.
Hence D is the matrix representation of; the function determined by 4 in this new basis.]
(c¢) Use the diagonal factorization of A,
1 2\(5 o\/ 4 2
A=PDpP ' = 3
1 1o -1 AL -}
and 55 = 3125 and (1) = — 1 to obtain:
1 2\/ 3125 0\/} 2 1041
AS — PDSP* 1 = ( ) .'5 3 - 2084
1 -1 0 —1\; -4 1042 2083

Also, since f(5) = 90 and f(— 1) = — 24,
o 1 2yY9% oyi 2 14 76
= t = =
f4)=FILDP (1 —1)(0 —24)(1_'; —1 (38 52

Find all eigenvalues and a maximal set S of linearly independent eigenvectors for the following

matrices:
5 6 5 —1
(@) A=(3 —2) (b) C=<1 3)

Which of the matrices can be diagonalized ? If so, find the required nonsingular matrix P.

(@) Find the characteristic polynomial A(t) = t? — 3t — 28 = (t — 7Xt + 4). Thus the eigenvalues of A4 are
Ay=T7and 4, = -4
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8.7.

(b)

(i)

(i)

EIGENVALUES AND EIGENVECTORS, DIAGONALIZATION [CHAP. 8

-2 6
Subtract 4, = 7 down the diagonal of A to obtain M =( 3 9) which corresponds to the
system
—2x +6y=0
o —3y=0
{ —9y=0 O 7

Here v, = (3, 1) is a nonzero solution (spanning the solution space) and so v, is the eigenvector of
A =1

9 6
Subtract A, = —4 (or add 4) down the diagonal of A to obtain M = ( 3 2) which corresponds to

the system 3x + 2y = 0. Here v, = (2, — 3) is a solution and hence an eigenvector of i, = —4.

Then S = {v, = (3, 1), v, = (2, —3)} is a maximal set of linearly independent eigenvectors of A. Since §
is a basis for R?, A is diagonalizable. Let P be the matrix whose columns are v, and v,. Then

2 7 0
P= 3 and P 'AP =
1 -3 0 —4

Find A(r) = 1* — 8t + 16 = (t — 4)%. Thus 4 = 4 is the only eigenvalue. Subtract 4 = 4 down the diago-

1 -1
nal of C to obtain M = (l l) which corresponds to the homogeneous system x + y = 0. Here

v = (1, 1) is a nonzero solution of the system and hence v is an eigenvector of C belonging to 4 = 4.
Since there are no other eigenvalues, the singleton set S = {v = (1, 1)} is 2 maximal set of linearly
independent eigenvectors. Furthermore, C is not diagonalizable since the number of linearly indepen-
dent eigenvectors is not equal to the dimension of the vector space R2. In particular, no such non-
singular matrix P exists.

2 2 . .
Let A= ( 1 3). Find: (a) all eigenvalues of A and the corresponding eigenvectors; (b) an invert-

ible matrix P such that D = P ' AP is diagonal; (¢) A®%; and (d) a “ positive square root” of A,
i.c., a matrix B, having nonnegative eigenvalues, such that B> = A.

(@@ Here At)=1t>—tr A+ |A|=1*—5t+4 =(t — 1)t —4). Hence 2, = 1 and i, = 4 are eigenvalues of
A. We find corresponding eigenvectors:

@M

(ii) Subtract 4, = 4 down the diagonal of A to obtain M =(

1 2
Subtract 4, = | down the diagonal of A to obtain M = (l ) which corresponds to the homo-

2

geneous system x + 2y = 0. Here v, = (2, — 1) is a nonzero solution of the system and so an

eigenvector of A belonging to 4, = 1.

-2
1

homogeneous system x — y = 0. Here v, = (1, 1} is a nonzero solution and so an eigenvector of A

belonging to 4, = 4.

2
l) which corresponds to the

(b) Let P be the matrix whose columns are v, and v, . Then

(©)

2 1 _ 1 0
P= and D=P 'AP =
-1 1 0 4

Use the diagonal factorization of A,

A—PDP ' = 2 1\/1 oy —1%
-1 1he a3 3

to obtain

1 1
3 3
1 2
3 3

—1 1 /A0 4096 1365 2731
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8.38.

+1 0
(d) Here 0 42 are square roots of D. Hence

G G I

is the positive square root of A.

o L
\/

4 I -1
Suppose 4 =| 2 5 —2/]. Find: (a) the characteristic polynomial A(t) of A, (b) the eigen-
1 1 2

values of A4, and (c) a maximal set of linearly independent eigenvectors of A. (d) Is A diagonal-

izable? If yes, find P such that P~ AP is diagonal.
(@) We have
t—4 -1 1
Aty={tI - Aj=| -2 -5 2 | =3— 1112 + 391 — 45
—1 -1 -2

()

()

Alternatively, A(t) = t3 — (it A2 + (A, + Ay + At — | A =13 — 111? + 39t — 45. (Here A;; is the
cofactor of g; in the matrix A.)
Assuming A(t) has a rational root, it must be among +1, +3. +5, +9, +15, +45. Testing by syn-
thetic division, we get
3] 1-11+39-45
3-24+45
1- 8+15+ 0

Thus ¢ == 3 is a root of A(t) and t — 3 is a factor, giving

A =@ -3 —8t+15) =@ -3 —N—3N=0¢ -3 -9
Accordingly, 4, = 3 and 1, = 5 are the eigenvalues of A.
Find independent eigenvectors for each eigenvalue of A.
1 1 -1
(i) Subtract 4, =3 down the diagonal of A to obtain the matrix M =] 2 2 -2 which
1 I -1
corresponds to the homogeneous system x + y —z=0. Hereu = (1, — 1, 0) and v = (1, 0, 1) are
two independent solutions.
-1 1 —1
(i) Subtract i, = 5 down the diagonal of A to obtain M = 2 0 —2 Jwhich corresponds to
1 1 -3
the homogeneous system

—x+y— z=0
x — z=0
2x —2z=0 or
y—2z=0
x+y—3z=

Only z is a free variable. Here w = (1, 2, 1) is a solution.

Thus {u=(1, —1,0), v = (1,0, 1), w = (1, 2, 1)} is a maximal set of linearly independent eigenvectors of
A.
Remark: The vectors u and v were chosen so they were independent solutions of the homo-
geneous system x + y — z = 0. On the other hand, w is automatically independent of 4 and v
since w belongs to a different eigenvalue of A. Thus the three vectors are linearly independent.
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8.9.

8.10.

8.11.

EIGENVALUES AND EIGENVECTORS. DIAGONALIZATION [CHAP. 8

(d) A is diagonalizable since it has three linearly independent eigenvectors. Let P be the matrix with
column u, v, w. Then

1 3
P=[-1 0 2 and P 'AP= 3
0 1 5
3 -1 1
Suppose B = 7 -5 1 | Find: (a) the characteristic polynomial A(t) and eigenvalues
6 -6 2

of B; and (b) a maximal set S of linearly independent eigenvectors of B. (¢) Is B diagonalizable? If
yes, find P such tht P 'BP is diagonal.

(a) We have:

tr(B)=3-5+2=0,B,,=-104+6=-4,B,,=6-6=0,B;;=-15+7=-8,
(B|=—30-6-42+30+18+14=-16

Therefore, A() =13 — 12t + 16 = (1 — 2)2(t + 4) and 50 A = 2 and A = 4 are the eigvenvalues of B.

(b) Find a basis for the eigenspace of each eigenvalue.

(i) Subtract A = 2 down the diagonal of B to obtain the homogeneous system

1 -1 1\ /x 0 x— y+z=0 N 0
X - =

7 —1 1)yl=[o} or Ix—Ty+2=0 or { Y Z_O

6 -6 of\z/ \o 6x—-6y =0 ¥y o=

The system has only one independent solution, e.g, x =1, y=1,z=0. Thus u = (1, 1, 0) forms a
basis for the eigenspace of A = 2.

(ii) Subtract A = — 4 (or add 4) down the diagonal of B to obtain the homogeneous system

7 —1 1\/x 0 Ix— y+ z=0

Ix-y+z=0
7 -1 Ifv}=1{o0 or Ix— y+ z=0 or { ‘=0
6 —6 6/\z 0 6x —6y 4+ 6z=0 T

The system has only one independent solution, e.g., x =0,y =1,z = 1. Thus v = (0, I, ) forms a
basis of the eigenspace of A = — 4.

Thus S = {u. v} is a maximal set of linearly independent eigenvectors of B.

(¢) Since B has at most two independent eigenvectors, B is not similar to a diagonal matrix, ie., B is not
diagonalizable.

Find the algebraic and geometric multiplicities of the eigenvalue A = 2 for matrix 8 in Problem
8.9.

The algebraic multiplicity of A = 2 is two since t — 2 appears with exponeni 2 in A(z). However, the
geometric multiplicity of A = 2 is one since dim E, = 1.

1 -1 . . .
Let A= ( 9 1). Find all eigenvalues and corresponding eigenvectors of 4 assuming A4 is a

real matrix. Is 4 diagonalizable? If yes, find P such that P~ AP is diagonal.

The characteristic polynomial of 4 is A(f) = t? + 1 which has no root in R. Thus A, viewed as a real
matrix, has no eigenvalues and no eigenvectors. and hence 4 is not diagonalizable over R.
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8.12.

8.13.

8.14.

Repeat Problem 8.11 assuming now that A is a matrix over the complex field C.

The characteristic polynomial of A is still A(t) = t? + 1. (It does not depend on the field K.) Over C,
A(1) does factor; specifically, A(t) = £ + 1 = (t — ikt + i). Thus A, = i and A, = —i are eigenvalues of A.

(i) Substitute t = i in tI — A to obtain the homogeneous system

(i—l 1 (x)_(O) o { i—Dx+y=0 0 —o
-2 i+1Ay/ " \o f x4+ ny=o O -bxtys

The system has only one independent solution, e.g., x =1, y =1 —i. Thus v, = (1, | — i) is an eigen-
vector which spans the eigenspace of 4, = i.

(i) Substitute t = —iinto tI — A to obtain the homogeneous system

—i—1 1 x\ 0 (—i—lx+y=0 i _
<~2 —i—l)(y)”<0) > {—2x+(*i--1)J’=0 N

The system has only one independent solution, e.g.. x = 1, y = 1 + i. Thus v, = (1, 1 + i) ts an eigen-
vector of A which spans the eigenspace of 4, = —1i.

As a complex matrix, A is diagonalizable. Let P be the matrix whose columns are v, and v, . Then
1 1 i 0
P= d P 'apP=
(1-;’ l+i) an (0 ——i)

2 4 . . .
Let B = ( 3 l)' Find: (a) all eigenvalues of B and the corresponding eigenvectors; (b) an invert-
ible matrix P such that D = P 'BP is diagonal; and (c) BS.

(@) Here A(f)=t>—tr B+ |B|=¢*—3t—10=(t — 5}t + 2). Thus i, = 5 and 4, = —2 are the eigen-
values of B.
-3
3 -4
homogeneous system 3x — 4y = 0. Here v, = (4, 3) is a nonzero solution.

(i) Subtract i, = S down the diagonal of B to obtain M =( ) which corresponds to the

4 4
(i) Subtract i, = —2 (or add 2) down the diagonal of B to obtain M = (3 3) which corresponds to

the system x + y = 0 which has a nonzero solution v, = (1, —1).

(Since B has two independent eigenvectors, B is diagonalizable.)

(h) Let P be the matrix whose columns are ¢, and v,. Then

4 1 - 5 0
P= and D=P 'BP=
3 -1 0 -2

(¢) Use the diagonal factorization of B,

P (I

1o obtain (5% = 15625, (—2)° = 64):

go - ppop-1 (4 VY15625 OV 3\ _ (8956 8892
3 -1\ 0 6a\3 -4/ \e669 6733

s -
SN

1
:
3
ki

1 2 3
Determine whether or not A4 is diagonalizable where 4 =|0 2 3.
0 0 3

Since A is triangular, the eigenvalues of A are the diagonal elements 1. 2, and 3. Since they are distinct,
A has three independent eigenvectors and thus A is similar to a diagonal matrix (Theorem 8.11). (We
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emphasize that here we do not need 1o compute eigenvectors to tell that A is diagonalizable. We will have
to compute eigenvectors if we want to find P such that P~ ' AP is diagonal.)

8.15. Suppose 4 and B are n-square matrices.

(a)
b)
(©

)
(a)

b)

()

0]

Show that 0 is an eigenvalue of A if and only if A is singular.
Show that AB and BA have the same eigenvalues.

Suppose A4 is nonsingular (invertible) and 1 is an eigenvalue of 4. Show that A
eigenvalue of 471,
Show that A and its transpose AT have the same characteristic polynomial.

! is an

We have that 0 is an eigenvalue of A4 if and only if there exists a nonzero vector v such that
A(v) = Ov = 0; i.e, if and only if A is singular.

By part (a) and the fact that the product of nonsingular matrices is nonsingular, the following state-
ments are equivalent: (i) O is an eigenvalue of AB, (ii) AB is singular, (iii} A or B is singular, (iv) BA is

singular, (v) 0 is an eigenvalue of BA.
Now suppose 4 is a nonzero eigenvalue of AB. Then there exists a nonzero vector v such that

ABv = Av. Set w = Bv. Since A # 0and v # 0,
Aw = ABv=Jv#0 and so w#£0
But w is an eigenvector of BA belonging to the eigenvalue A since
BAw = BABv = Biv = ABv = iw
Hence 4 is an eigenvalue of BA. Similarly, any nonzero eigenvalue of BA is also an eigenvalue of AB.

Thus AB and BA have the same eigenvalues.
By part (a) 4 # 0. By definition of an eigenvalue, there exists a nonzero vector v for which A(v) = Av.
Applying A~ ! to both sides, we obtain v = A~ '(iv) = A4 '(v). Hence A~ '(v) = A 'v; that is, A~ ' is an
eigenvalue of 4 1.
Since a matrix and its transpose have the same determinant, |t — A} = |(t] — A)"| = |t — AT|. Thus
A and AT have the same characteristic polynomial.

8.16. Let 4 be an eigenvalue of an n-square matrix A over K. Let E, be the eigenspace of 4, i.., the set
of all eigenvectors of A belonging to 4. Show that E, is a subspace of K", that is, show that:
(a)ifve E;, then kv € E, for any scalar ke K;and (b)ifu,v e E;,thenu + v e E,.

(@

Since v € E,, we have A(v) = iv. Then
A(kv) = kA(v) = k(Av) = A(kv)

Thus kv € E,. [We must allow the zero vector of K" to serve as the “eigenvector” corresponding to
k =0, to make E, a subspace.]

(h) Sinceu,ve E;, wehave A(u) = Av and A(v) = Av. Then

Alu + vy = AWy + A@W) = Au + iv = Hu + v)

Thusu+vekE,.

DIAGONALIZING REAL SYMMETRIC MATRICES AND REAL QUADRATIC FORMS

3
817. letA= (

5 i) Find a (real) orthogonal matrix P for which PTAP is diagonal.

The characteristic polynomial A(t) of A is
-3 -2 ’

=12 —6t+S5=(—51t—1
9 -3 ( X )

A(t) = |t — A} =|t

and thus the eigenvalues of 4 are § and 1.
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8.18.

Subtract 4 = 5 down the diagonal of A to obtain the corresponding homogeneous system of linear
equations

~-2x+2y=0 2x —2y=0

A nonzero solution is v, = (1, 1). Normalize v, to find the unit solution u, = (1 /\/5, 1 /\/5).
Next subtract 4 =1 down the diagonal of A to obtain the corresponding homogeneous system of

linear equations
2x +2y=0 2x + 2y =0

A nonzero solution is v, = (1, —1). Normalize v, to find the unit solution u, = (1/\/5, — l/ﬁ).
Finally let P be the matrix whose columns are u, and u,, respectively; then

pe((Ne N2 e (S )

As expected, the diagonal entries of PTAP are the eigenvalues of A.

1t -8 4
Suppose C =} —~8 —1 —2] Find: (a) the characteristic polynomial A(t) of C; (b) the eigen-
4 -2 -4

values of C or, in other words, the roots of A(t); (¢) a maximal set S of nonzero orthogonal
eigenvectors of C; and (d) an orthogonal matrix P such that P 'CP is diagonal.
(@) Wehave
Aty =13 —(ir CY? + (Cyy + Caq + Ca3kt — |C} = 1* — 612 — 135t — 400
[Here C,; is the cofactor of ¢;; in C = (c;;).]
(b) If A(r) has a rational root, it must divide 400, Testing t = — 5, we get
~5]1— 6-135-—400

7 — 54+ 55+400
1—11-—- 80+ O

Thus t + 5 is a factor of A(t) and
A() = (¢ + S)t2 — 11z — 80) = (¢ + 5)(t — 16)

Accordingly, the eigenvalues of C are 4 = —5 (with muhiplicity two) and 4 = 16 (with multiplicity
one).
(¢) Find an orthogonal basis for each eigenspace.
Subtract A = —5 down the diagonal of C to obtain the homogeneous system
f6x —~8y+4z=0 —8x+4y~2z=0 4x—2y+z=0

That is, 4x — 2y + z = 0. The system has two independent solutions. One solution is v, = (0, 1, 2). We
seek a second solution v, = (g, b, ¢) which is orthogonal to v,; i.e,, such that

da—2b+c=0 and also b—2c=0

One such solution is v, = (—35, —8, 4).
Subtract 4 = 16 down the diagonal of C to obtain the homogeneous system

—5x —8y+4z=0 ~8x —17y—2z=0 4x -2y —20z =0

This system yields a nonzero solution v, = (4, —2, 1). (As expected from Theorem 8.13, the eigenvector

v, is orthogonal to v, and v, .) )
Then v,, v,, v4 form a maximal set of nonzero orthogonal eigenvectors of C.
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(d) Normalize v,, v,, v, to obtain the orthonormal basis

u =0, 15, 2/9)  up =(—5//105, —8/,/105,4,/105)  u,y = (4//21, —2//21, 1//21)

Then P is the matrix whose columns are u, u;, u;. Thus

0 —5,/105 4./21 -5
p=\1/5 —8,/105 -2/./21] and P'CP= -5
>S5 4105 11,/ 16

8.19. Let g(x, y) = 3x? — 6xy + 11y~ Find an orthogonal change of coordinates which diagonalizes q.

Find the symmetric matrix A representing g and its characteristic polynomial A(z):

A=<_3 _3) and Alt) = t—3 3

=t - 14 =(t — —
T 3 (-1 t 4t + 24 =( — 2}t — 12)

The eigenvalues are 2 and 12; hence a diagonal form of ¢ is
qx, y) = 2x? + 122
The corresponding change of coordinates is obtained by finding a corresponding set of eigenvectors of A.
Subtract 4 = 2 down the diagonal of A to obtain the homogeneous system
x-3v=0, -3x+9=0
A nonzero solution is v; = (3,1). Next subtract A = 12 down the diagonal of A to obtain the homogeneous
system

-9 -3y=0, -3x-y=0

A nonzero solution is v, = (—1, 3). Normalize v, and v, to obtain the orthonormal basis

u, = (3//10, 1,,/10) u, = (—1/,/10, 3/,/10)

The change-of-basis matrix P and the required change of coordinates follow:

(3/‘ 10 —17/ 10) (x) (x) {x =(3x — V) /10
P = =P , or
17/10 3, /10 y y y=(x + 3y),/10

One can also express x” and ' in terms of x and y by using P~ = P7, that is,

X' =(3x + ¥/ /10 ¥ =(=x+3y)//10

8.20. Consider the quadratic form g(x, y, z) = 3x? + 2xy + 3y* + 2xz + 2yz + 3z%. Find:

(a) The symmetric matrix 4 which represents g and its characteristic polynomial A(t),
(b} The eigenvalues of A or, in other words, the roots of A(r),

(¢) A maximal set S of nonzero orthogonal eigenvectors of A.

(d) An orthogonal change of coordinates which diagonalizes q.

(a) Recall A = (q;)) is the symmetric matrix where g, is the coefficient of x? and g,; = a;; is one-half the
coefficient of x;x;. Thus

3 1 1 t—3 -1 —1
A=|1 3 1 and A)=| -1 1-3 —1|=0—97+24-20
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(b) If A(t) has a rational root, it must divide the constant 20, or, in other words, it must be among
+1, +2, +4, +5, +10, +20. Testing t = 2, we get

21 1-9+24-2
2—-14+20
1-7+104+0
Thus ¢ — 2 is a factor of A(t), and we find

A =(t— 2> =Tt +10)=(t — 2*(t — 5)

Hence the eigenvalues of A are 2 (with multiplicity two) and 5 (with multiplicity one).

(¢) Find an orthogonal basis for each eigenspace.
Subtract A = 2 down the diagonal of 4 to obtain the corresponding homogeneous system

x+y+z=0 x+y+z=0 x+y+z=0

That is, x + y + z = 0. The system has two independent solutions. One such solution is v, = (0, 1, —1).
We seek a second solution v, = (a, b, ¢) which is orthogonal to v, ; that is, such that

a+b+c=0 and also b—-—c=0

For example, v, = (2, —1, —1). Thus v; =(0, 1, —1), », = (2, —1, —1) form an orthogonal basis for
the eigenspace of 1 = 2.
Subtract 4 = 5 down the diagonal of A4 to obtain the corresponding homogeneous system

—2x+y+z=0 x—2y+z=0 x+y—2z=0

This system yields a nonzero solution v, = (1, 1, 1). (As expected from Theorem 8.13, the eigenvector v,
is orthogonal to v, and v, .)

Then vy, v,, v, form a maximal set of nonzero orthogonal eigenvectors of A.
(d Normalize v,, v,, v4 to obtain the orthonormal basis

uy =0, 1/4/2, —1//2) u, = 21\/6, —1/,/6, —1/,/6) uy = (13/3, 11/3, 1/3)
Let P be the matrix whose columns are u,, u,, u;. Then
0 2J6 113 2
p=\ 11 /2 -y JS6 11 /3] and PTAP= 2
—1A/2 —1/6 1./3 5

Thus the required orthogonal change of coordinates is

Under this change of coordinates, ¢ is transformed into the diagonal form

qx’, vy, z') = 2x'2 4 2y’2 4 5z

MINIMUM POLYNOMIAL

4 -2 2
8.21. Find the minimum polynomial m(s) of the matrix A= {6 -3 4
3 -2 3
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8.22.

8.23.

8.24.
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First find the characteristic polynomial A(t) of 4:

t—2 1 -1
A=t —Al=]| -6 t+3 —4|=0-a24+51-2=(0—2—1)
-3 2 t—13

Alternatively, A(t) =1> — (tr Aj2 + (A, + Ay + At —JA| =1 — 4% + 5t — 2 = (t — 2Xt — 1)>. (Here
A;; is the cofactor of g;; in A.)

The minimum polynomial m(t) must divide A(t). Also, each irreducible factor of A(r), that is, t — 2 and
t — 1, must also be a factor of m(t). Thus m{t) is exactly only of the following:

fO=(=2t—-1 or g(n) = (t — 2%t — 1)?

We know, by the Cayley—-Hamilton Theorem, that g(A4) = A(4) = 0; hence we need only test f(r). We
have

2 -2 2\/3 -2 2 0o o0 o0
fldy=(A—2yA-DN=(6 -5 all6e -4 4a]l={o0 o o
3 -2 1J\3 -2 2 0 0 0

Thus f(1) = m(t) = (t — 2}t — 1) = 12 — 3t + 2 is the minimum polynomial of A.

/i a 0
Find the minimum polynomial m(t) of the matrix, where a #0. B={0 i a].
0 0 4

The characteristic polynomial of B is A(t) = (1 — 4)*. [Note mlt) is exactly one of t — 4, (t — A)%, or
(t — /)>] We find (B — A)? # 0; thus m(t) = A(t) = (t — )™

(Remark: This matrix is a special case of Example 8.11 and Problem 8.61.)

4 1 0 0 O
04100
Find the minimum polynomial m(t) of the following matrix: M'=10 0 4 0 0
0 0 0 41
0 0 0 0 4
Here M’ is block diagonal with diagonal blocks
4 10 41
A=0 4 1 and B’=(0 4)
0 0 4

The characteristic and minimum polynomial of A’ is f(1) = (t — 4)°, and the characteristic and minimum
polynomial of B’ is g(t) = (t — 4)%. Thus A(t) = f(t)g(t) = (t — 4)° is the characteristic polynomial of M’, but
m{t) = LCM [f(z), g(t)] = (t — 4)® (which is the size of the largest block) is the minimum polynomial of M.

Find a matrix 4 whose minimum polynomial is:

(@ fO=1>—8>+5+7, B fO=t*—3>-4>+5t+6
Let A be the companion matrix (see Example 8.12) of f(t). Then
o 0 5 0 0 0 —6
@ A=|1 0—5 w a=|L 0 9
@ A= o 1 o o 1 o a
0 0 1 3
(Remark: The polynomial f(t) is also the characteristic polynomial of A.)
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8.25. Show that the minimum polynomial of a matrix A exists and is unique.

By the Cayley—Hamilton Theorem, A is a zero of some nonzero polynomial (see also Problem 8.37).
Let n be the lowest degree for which a polynomial f(1) exists such that f(A) = 0. Dividing f(r) by its leading
coefficient, we obtain a monic polynomial m(t} of degree n which has A as a zero. Suppose n'(t) is another
monic polynomial of degree n for which m'(4) = 0. Then the difference m(t) — m'(r} is a nonzero polynomial
of degree less than n which has A as a zero. This contradicts the original assumption on n; hence m(t) is the
unique minimum polynomial.

PROOFS OF THEOREMS
8.26. Prove Theorem 8.1. (i) (f + g)(A) = f(A) + g(A), (ii) (fg)A) = f(A)g(A), (iii) (kf WA) = kf(A).
Suppose f=a,t"+ - +a,t + ggandg = b, t™ + --- + bt + by. Then by definition,
S =a, A"+ - +a,A+ao] and gAY =b, A"+ +b,A+ byl

(1) Suppose m < nandlet b, = 0if i > m. Then
fH+ag=(a,+b)}" + - +(a, + b))t +{a, + by)
Hence

U+ gy =(a, + b)A" + --- +(a, + b))A + (ap + bl
=a,A"+ b, A"+ -+ a, A+ b A +aygl + byl =f(A) + g(A)

ntm

(i) By definition, fg = oo™ ™+ - + it + o= 3 ¢, t* where
k=0

k
& =aob, +ab, ,+--+abo=Y ab,_,
i=0

ntm

Hence (fghA4) = ¥ ¢, A*and

k=0

J(A)gA) = ( Za-"‘i)( > bjAf) =Y Yab At =Y ¢, A = (fgKA)
f=0 j=0 i=0 j=0 k=0
(i) By definition, kf = ka,t" + - -- + ka,t + ka,, and so
(XA = ka, A" + - + ka,A + kag I = Ka,A" + --- + a,A + ao I) = kf(A)

(iv) By (ii), gl A)(A) = (gf XA) = (fgHA) = [(A)gl A).

8.27. Prove the Cayley-Hamilton Theorem 8.2. Every matrix is a root of its characteristic polynomial.
Let A be an arbitrary n-square matrix and let A(z) be its characteristic polynomial; say,
A)=|tI —Al="+a,_ " '~ +at+aq

Now let B(t) denote the classical adjoint of the matrix tI — A. The elements of B(t) are cofactors of the
matrix t{ — A and hence are polynomials in t of degree not exceeding n — 1. Thus

By=B, "'+ --+Bt+ B

where the B; are n-square matrices over K which are independent of ¢. By the fundamental property of the
classical adjoint (Theorem 7.9), (¢ — A)B(t) = |l — A}l, or

Wl —AXB,_ " "+ + Byt +B)=(t"+a, (" "+ ---+a,t+a}
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8.28.

8.29.

EIGENVALUES AND EIGENVECTORS, DIAGONALIZATION [CHAP. 8

Removing parentheses and equating the coefficients of corresponding powers of ,

Bn- 1 =1
B, ,—AB, ,=a, I
Bn‘3~ABn72=an421

Multiplying the above matrix equations by A", 4" ~*, ..., A, I, respectively,

A'B,_, = A"
An_lBu—Z - A"Bn—l = Q- lAﬂ‘l
An—ZBnHJ_ A"_IB"_Z =a”_2An«2

Adding the above matrix equations,
0=A"+aq, A" "+---+a,A+ayl

or A(A) = 0, which is the Cayley-Hamilton Theorem.

Prove Theorem 8.6.

The scalar 4 is an eigenvalue of A if and only if there exists a nonzero vector v such that
Av = iv or (Ayp— Av =20 or (Al - Ap=0

or M = I — A is singular. In such a case A is a root of A(t) = |t] — A|. Also, v is in the eigenspace E, of 4 if
and only if the above relations hold; hence v is a solution of (Al — A)X = 0.

Prove Theorem 8.9.

Suppose A has n linearly independent eigenvectors v,, v,, ..., v, with corresponding eigenvalues
Ay A3, ..., 4,. Let P be the matrix whose columns are v, ..., v,. Then P is nonsingular. Also, the columns
of AP are Av,, ..., Av,. But Ay, = Av, . Hence the columns of AP are i,v,, ..., 4,v,. On the other hand, let
D = diag (4, 4;, ..., 4,), that is, the diagonal matrix with diagonal entries 4,. Then PD is also a matrix

with columns 4, v, . Accordingly,
AP = PD and hence D=P 'AP

as required.
Conversely, suppose there exists a nonsingular matrix P for which

P 'AP =diag (4, i;,...,4)=D andso AP =PD

Let v,, v,, ..., v, be the column vectors of P. Then the columns of AP are Av, and the columns of PD are
4y vy, - Accordingly, since AP = PD, we have
Avy = Auy, Avy = 4,05, ..., Ay, = 4,0,

Furthermore, since P is nonsingular, v,. v,, ..., v, are nonzero and hence, they are eigenvectors of A
belonging to the eigenvalues that are the diagonal elements of D. Moreover, they are linearly independent.
Thus the theorem is proved.
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8.30.

8.31.

8.32.

8.33.

Prove Theorem 8.10.

The proof is by induction on n. If n = 1, then v, is linearly independent since v, # 0. Assume n > 1.
Suppose
avy; +a,v, + - +a,0,=0 H

where the qg; are scalars. Multiply (/) by 4 and obtain
a,Av, + a, Av, +--- + a,Av, = A0 =0
By hypothesis, Av; = A;v,. Thus on substitution we obtain

aAv, +az A v+ +a, v, =0 2

On the other hand, multiplying (/) by 4,, we get
a vy +a, vy + - +a i, =0 &)
Subtracting (3) from (2) yields
ayAy — Ay +aydy, — Ao+ - +a, (A — A,y =0

By induction, vy, v,, ..., v,_, are linearly independent; hence each of the above coefficients is 0. Since the 4;
are distinct, ;; — 4, # O for i # n. Hence a, = - -- = g, _; = 0. Substituting this into (/), we get g,v, = 0, and
hence a, = 0. Thus the v; are linearly independent.

Prove Theorem 8.11.

By Theorem 8.6, the a; are eigenvalues of A. Let v; be corresponding eigenvectors. By Theorem 8.10,
the v, are linearly independent and hence form a basis of K". Thus A is diagonalizable by Theorem 8.9.

Prove Theorem 8.15. The minimum polynomial m(t) of A divides f(t) whenever f(A) = 0.

Suppose f(1) is a polynomial for which f(A4) = 0. By the division algorithm, there exist polynomials g(r)
and r(t) for which f(1) = m(t)g(t) + r{t) and r{t}) = O or deg r(t) < deg m(t). Substituting t = A in this equation,
and using that f(A4) = 0 and m{A) = 0, we obtain r{(4) = 0. If H{r) # 0, then r{t) is a polynomial of degree less
than m(t) which has A as a zero; this contradicts the definition of the minimum polynomial. Thus 1t) =0
and so f(t) = m{t)g(t), i.e, m(t) divides f(¢).

Let m(t) be the minimum polynomial of an n-square matrix A.

(a) Show that the characteristic polynomial of A divides (m(t))".
(b) Prove Theorem 8.16. m(1) and A(r) have the same irreducible factors.
(@) Supposem(t) =t +¢,' ' + -+ + ¢, st + ¢,.Consider the following matrices:
By=1
B, =A+c¢,l
B,=A*+c,A+c,1

B,_,=A" '+, A2+ 40¢, I
Then By=1
B, — ABy=c,I
By, — AB, = ¢,1

B,_;—AB, ;=c¢_,l
Also, —AB, ,=c¢l—(A"+c, A '+ 4+, A+c D)
=¢,I — m(A)

=, I
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8.34.

8.35.
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Set B)=t 'By+t " ?B,+---+1B,_,+B,_,
Then
(I —A)-B@t)=(t"By+t "By +--+tB,_,)— (' '"ABy + ' 2AB, + - + AB, })

=By + ¢ (B, — ABg) + ' " ¥B, — AB,) + - + (B,_, — AB,_,) — AB, _,
=T +ct" M+t T+ 4,4t +¢,1
= m{t)]

Taking the determinant of both sides gives [tI — A||B(t})| = |m{t)l | = (m{t))". Since | B(z)| is a poly-

nomial, | tI — A| divides (m{t))"; that is, the characteristic polynomial of A divides (m(¢))".

(h) Suppose f(1) is an irreducible polynomial. If f{t) divides m({t) then, since m(t) divides A(z), f(1) divides

A(2). On the other hand, if f(t) divides A(t) then, by part (a), f(2) divides (m(t))". But f(z) is irreducible;
hence f{(t) also divides m(t). Thus m{t) and A(?) have the same irreducible factors.

Prove Theorem 8.18.

We prove the theorem for the case r = 2. The general theorem follows easily by induction. Suppose
A 0 . .
M= ( B) where A and B are square matrices. We need to show that the minimum polynomial m(t) of

M is the least common multiple of the minimum polynomials g(t) and h(t) of A and B, respectively.
mA) O

0 m(B)
m(B) = 0. Since g(t) is the minimum polynomial of A, g(t} divides m(t). Similarly, h(t) divides m{¢). Thus m(t)
is a2 multiple of g(t) and h(t).

Now let f(t) be another multiple of g(t) and h(t); then f(M) = (f(A) 0 ) = (0 0) = 0. But m(t) is
’ 0 f(B) 0o o/

the minimum polynomial of M; hence m(t) divides f(¢). Thus m(t) is the least common multiple of g(t)
and h(r).

Since m{t) is the minimum polynomial of M, m{M) =( )= 0 and hence m(4) =0 and

Suppose 4 is a real symmetric matrix viewed as a matrix over C.
(a) Prove that {Au, v)> = {u, Av) for the inner product in C".
(b) Prove Theorems 8.12 and 8.13 for the matrix A.

(@) We use the fact that the inner product in C" is defined by (u. v) = u"5. Since A is real symmetric,
A= AT = A Thus

{Au, vy = (AW)D = uTA™D = 4T AD = uT Av = (u, Av)
() We use the fact that in C", (ku, v) = k<u, v) but {u, kvd = k{u, v>.
(1) There exists v # 0 such that Av = Av. Then
v, v> = U, 0) = (Av, 1) = (v, AvD = (v, Avd> = v, 1D

But (v, v) # 0since v # 0. Thus A = 4 and so 4 is real.
(2) Here Au = 4,u and Av = A, v and, by (1), 4, is real. Then

Ak, ) = (A, 0) = (A, ©) = i, Ao = Cu, Ay = 1, v) = 4,<u, v)

Since 4, # 4,, we have (u,v) = 0.

MISCELLANEOUS PROBLEMS

8.36.

Suppose A be a 2 x 2 symmetric matrix with eigenvalues 1 and 9 and suppose u = (1, 3)T
is an eigenvector belonging to the eigenvalue 1. Find: (a) an eigenvector v belonging to the
eigenvalue 9, (b) the matrix A4, and (c) a square root of A4, i.e., a matrix B such that B = A.
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8.37.

8.38.

8.39.

(@) Since A is symmetric. v must be orthogonal to u. Setv = (—3. 1)".
(b) Let P be the matrix whose columns are the eigenvectors u and v. Then, by the diagonal factorization of

A, we have
i I SR N G
A 7RG

(Alternatively, A is the matrix for which Au = u and Av = 9r)

(c) Use the diagonal factorization of 4 to obtain
perme=(0 e ok B3 )

Let A be an n-square matrix. Without using the Cayley—Hamilton theorem, show that A4 is a
root of a nonzero polynomial.

Let N = n?. Consider the following N + 1 matrices
1A A% ... AR

Recall that the vector space V of n x n matrices has dimension N = n®. Thus the above N + 1 matrices are
linearly dependent. Thus there exist scalars a,, a,, g, , ..., ay, not all zero, for which
ay AN+ -+ aA4+a,l=0

Thus A is a root of the polynomial f(t) = ayt™ + --- + a,t + a,.

Suppose A is an n-square matrix. Prove the following:

(a) A is nonsingular if and only if the constant term of the minimum polynomial of A4 is not
zero.
(b) If Ais nonsingular, then 4 ' is equal to a polynomial in 4 of degree not exceeding n.

(@) Suppose f{t) =t + a,_;t" ' + -+ + a;t + a, is the minimum (characteristic) polynomial of A. Then
the following are equivalent: (i) A is nonsingular, (ii) 0 is not a root of f(t), and (iii) the constant term a,
is not zero. Thus the statement is true.

{b) Let m(t) be the minimum polynomial of A. Then m(ty =1+ a,_, " ' + -+ + a;t + a,, where r < n.
Since A is nonsingular, a, # 0 by part (a). We have

mA) = A" +a_ A" "+ - +aA+al =0
Thus
! 1 -2
—— (A" ta_ AT a A=
Gg
Accordingly,

471 = ——I—(A"‘ +a,_ A+ +al)
“ a r—t 1

Let F be an extension of a field K. Let A4 be an n-square matrix over K. Note that A may also be
viewed as a matrix A over F. Clearly [t] — A|=[t] — A|, that is, A and A have the same
characteristic polynomial. Show that A and A also have the same minimum polynomial.

Let m{t) and m(¢) be the minimum polynomials of A and A, respectively. Now m(t) divides every
polynomial over F which has A as a zero. Since mit) has A as a zero and since m(r) may be viewed as a
polynomial over F, m'(t) divides m(t). We show now that m{¢) divides m'(r).
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Since m'(t) is a polynomial over F which is an extension of K, we may write
m'(1) = fi(Db, + fr{t)b; + -+ + £, ()b,
where f{t) are polynomials over K, and b,, ..., b, belong to F and are linearly independent over K. We have
m(A) = f[{(A)b; + fr(A)b, + -~ + f(A)b, =0 ()
Let ¢}’ denote the ij-entry of f;(A). The above matrix equation implies that, for each pair (i, ),
a}’b, + ag)bz + 4+ alh, =0
Since the b, are linearly independent over K and since the a}’ € K, every a¥' = 0. Then
SiA) =0, f(A)=0,..., f(A)=0

Since the f{t) are polynomials over K which have A as a zero and since m(t) is the minimum polynomial of

A as a matrix over K, m(t) divides each of the f(t). Accordingly, by (1), m{t) must also divide m'(t). But monic
polynomials which divide each other are necessarily equal. That is, m(t) = m'(t), as required.

Supplementary Problems

POLYNOMIALS IN MATRICES
840. Let f()=2*-5t+6 and g(t)=1>—22+t+3. Find f(A), g(A), f(B), and g(B) where

2 -3 1 2
= B = N
A (5 1) and (0 3)

l l H 2 3

841, LetA= o l.FmdA,A.A".
g8 12 O

842. LetB=|0 8 12]. Find a real matrix A such that B = 43
0 0 8

843. Show that, for any square matrix A, (P~ 'AP)" = P~ 'A"P where P is invertible. More generally, show that
f(P~1AP) = P f(A)P for any polynomial f(t).

844. Let f(1) be any polynomial. Show that (a) f(AT) = (f(A))T, and (b) if A is symmetric, then f(A) is symmetric.

EIGENVALUES AND EIGENVECTORS

5 6
84S. Let A =( ) 2). Find: (a) all eigenvalues and linearly independent eigenvectors; (b) P such that
D = P 'AP is diagonal; (c) A'° and f(A) where f(t) = ¢* — 5¢> + 7¢ — 2t + 5; and (d) B such that B? = A.

8.46. For each of the following matrices, find all eigenvalues and a basis for each eigenspace:

301 1 1 2 2 1 1 0
@@ A=|2 4 2] o B={ 1 2 -1} @ c={o 1 o
1 1 3 -1 1 4 0 0 1

When possible, find invertible matrices P,, P,, and P, such that P;'AP,, P;'BP,, and P;'CP; are
diagonal.
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8.47.

8.48.

8.49.

8.50.
851.
852

2 -1 3 -1
Consider the matrices A = (l 4) and B = (13 3). Find all eigenvalues and linearly independent

eigenvectors assuming (a) A and B are matrices over the real field R, and (b) A and B are matrices over the
complex field C.

Suppose v is a nonzero eigenvector of matrices A and B. Show that v is also an eigenvector of the matrix
kA + k'B where k and k' are any scalars.

Suppose v is a nonzero eigenvector of a matrix A belonging to the eigenvalue 4. Show that for n > 0, v is
also an eigenvector of A” belonging to A"

Suppose 1 1s an eigenvalue of a matrix A. Show that f(4) is an eigenvalue of f(A4) for any polynomial f(1).
Show that similar matrices have the same eigenvalues.

Show that matrices A and A" have the same eigenvalues. Give an example where 4 and A7 have different
eigenvectors.

CHARACTERISTIC AND MINIMUM POLYNOMIALS

8.53.

8.54,

8.55.

8.56.
8.57.
8.58.

8.59.

8.60.
8.61.

Find the characteristic and minimum polynomials of each of the following matrices:

2 5000 31000 A 0000
02000 03 000 042000

A=10 0 4 2 0 B=10 0 3 1 0 C=10 0 A 00
003 50 000 31 000 424 0
00007 0 0003 0000 2

1 10 2 00

Let A={0 2 O0}and B={0 2 2) Show that A and B have different characteristic polynomials
¢ 0 1 0 01

(and so are not similar), but have the same minimum polynomial. Thus nonsimilar matrices may have the
same minimum polynomial.

tI1— A —B

A
id block matrix M =
Consider a square block matrix ( ~C U-D

B
. Show thattl — M =
C D

) is the characteristic
matrix of M.
Let A be an n-square matrix for which A4* = 0 for some k > n. Show that A" = 0.

Show that a matrix A and its transpose A7 have the same minimum polynomial.

Suppose f(1) is an irreducible monic polynomial for which f(A) = 0 for a matrix A. Show that f{r) is the
minimum polynomial of A.

Show that A is a scalar matrix k/ if and only if the minimum polynomial of Aism(t) =t — k.
Find a matrix A whose minimum polynomial is (a) t> — 5% + 6t + 8, (b)) t* — 5¢> — 2t + 7t + 4.

Consider the following n-square matrices (where a # 0):

010 0 0 A a 0 0
00 1 0 0 0 A a 0 0
Nl M=l
0 00 0 1 000 i a
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Here N has Is on the first diagonal above the main diagonal and Os elsewhere, and M has A’s on the main
diagonal, a’s on the first diagonal above the main diagonal and Os elsewhere.

(@) Show that, for k < n, N* has Is on the kth diagonal above the main diagonal and Os elsewhere, and
show that N" = 0.

(b) Show that the characteristic polynomial and minimal polynomial of N is f{t) = t".

(¢) Show that the characteristic and minimum polynomial of M is g(t) = (t — Ay". (Hint: Note that
M = Al + aN.)

DIAGONALIZATION

b
862. letA= (a d) be a matrix over the real field R. Find necessary and sufficient conditions on a, b, ¢, and d
c

so that A is diagonalizable, i.e., has two linearly independent eigenvectors.

8.63. Repeat Problem 8.62 for the case that A is a2 matrix over the complex field C.

8.64. Show that a matrix A is diagonalizable if and only if its minimum polynomial is a product of distinct linear
factors.

8.65. Suppose E is a matrix such that E* = E.

(@) Find the minimum polynomial m{t) of E.
I 0
(») Show that E is diagonalizable and, moreover, E is similar to the diagonal matrix A = (0' 0) where r

is the rank of E.
DIAGONALIZATION OF REAL SYMMETRIC MATRICES AND QUADRATIC FORMS
8.66. For each of the following symmetric matrices A, find an orthogonal matrix P for which P~ ' AP is diagonal:

1 2 5 4 7 3
(@ A=(2 _2), (b) A=(4 _1). (© A=(3 _1)

8.67. Find an orthogonal transformation of coordinates which diagonalizes each quadratic form:

(@ gix, y) = 2x* — 6xy + 10y, (B) glx, y) = x* + 8xy — 5)?

8.68. Find an orthogonal transformation of coordinates which diagonalizes the following quadratic form
q(x, y, 2) = 2xy + 2xz + 2yz.

8.69. Let A be a 2 x 2 real symmetric matrix with eigenvalues 2 and 3, and let v = (1, 2) be an eigenvector
belonging to 2. Find an eigenvector v belonging to 3 and find A.

Answers to Supplementary Problems
-2 -3 —40 39 36
8.40. f(A)=( 5 _27), g(A)=(_65 _27), f(B)=(0 9), g(B)=((3) :z)

8.41. A1=(1 2), O e R
0 I 0 1 01
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2 ab
842. Hint: Let A={0 2 c|. Set B= A% and then obtain conditions on a, b, and c.
0 0 2
3 2
845. (@) A, =Lu=(3, —25i,=2,v=(2, 1) b P= —2 1
o 4093 6138 2 -6 ~344/2 —6+6/2
() A = ,f(A) = d B=
—2046 —3066 2 9 2-2/2 4-3)2
846. (@) A4, =2,u=(,—-10,v=(1,0, —1); 4, =6,w=(1,2,1)
By A =3u=(1,1,0v=(1,01:4,=1,w=(2 —1,1)
() A=Lu=(1,0,0,v=1(0,0,1)
1 1 1 1 1 2
Let P, =] —1 0 2)and P, ={1 0 -1 ). P, does not exist since C has at most two linearly

0 —1 1 0 1 1

independent eigenvectors, and so cannot be diagonalized.

847. (@) For A, 1 =3,u = (1, —1); B has no eigenvalues (in R);
(b) ForA,A=3,u=(, —1);forB.A; =2i,u=(1,3 —-2i);i,=-2i,v=(1,3 + 2i).

11
852 Let A= (O l)' Then A =1 is the only eigenvalue and v = (1, 0) spans the eigenspace of A = 1. On the

0

1
other hand, for A" = (l )

), A = 1is still the only eigenvalue, but w = (0, 1) spans the eigenspace of 4 = 1.
853 (1) AD=(—-2—-7%m=(—-20—7)

(b) A =(—3P;mt)=(—-3)7°

© AO=@—-aimn=1—4

0 0 0 -4
8.60 (a)A—(l) 2:2 (b)A=l o 0 =7
- - i 0 1 0 2

o 1 3 0 o 1 5

865. ta) IfE=1Im{t)=(t — 1);if E =0, m(t) = t; otherwise m{t) = 1t — 1).
(b) Hint: Use (a)

2//5 —1/\/3) ( 5 - 1/\/3) (3/\/ 10 —l/\/lO)
8.66. P= y b) P= , P=
@ (—1/\/3 2/5 © YNNG © VIo  3/V10

867. (@) x=0(x—yYUJ10,y=(x+3¥)V /10, (B) x=@x -y /5y = +2¥)/5

8.68. x =x/\/3+V/I\/2+ 216, y=x1/3—VIS2+21/6z=xI/3—2//6

)

1

869. v=(2,—1),4 =(

|
a2 o

4
2
3
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Similarity and Linear Operators

Suppose 4 and B are square matrices for which there exists an invertible matrix P such that
B = P 'AP; then (Section 4.13) B is said to be similar to A or is said to be obtained from A4 by a
similarity transformation. By Theorem 10.4 and the above remark, we have the following basic result.

Theorem 10.5: Two matrices A and B represent the same linear operator T if and only if they are
similar to each other.

That is, all the matrix representations of the linear operator T form an equivalence class of similar
matrices.

Now suppose f is a function on square matrices which assigns the same value to similar matrices;
that is, f(4) = f(B) whenever A is similar to B. Then f induces a function, also denoted by f, on linear
operators T in the following natural way: f(T) = f([T]s) where § is any basis. The function is well-
defined by Theorem 10.5. Three important examples of such functions are:

(1) determinant, (2) trace, and (3) characteristic polynomial

Thus the determinant, trace, and characteristic polynomial of a linear operator T are well-defined.

Example 10.4. Let F be the linear operator on R? defined by F(x, y) = (2x — 3y, 4x + y). By Example 10.34, the
matrix representation of T relative to the usual basis for R? is

)
A=

4 1
Accordingly:

(i) det(T)=det(A) =2 + 12 = 14 is the determinant of T.
(i) rT=trA=2+1=3isthetraceof T.
(iii) AHAt) = A (f) = t? — 3t + 14 is the characteristic polynomial of T.

By Example 10.3, another matrix representation of T' is the matrix
4 10t

B =
-18 —-41

(i) det(T) = det(4) = —1804 + 1818 = 14 is the determinant of T.
(i) trT=tr4A=44—41 =3isthetrace of T.
(i) A1) = Ay(t) = 2 — 3t + 14 is the characteristic polynomial of 7.

Using this matrix, we obtain:

As expected, both matrices yield the same results.

104 DIAGONALIZATION OF LINEAR OPERATORS

A linear operator T on a vector space V is said to be diagonalizable if T can be represented by a
diagonal matrix D. Thus 7 is diagonalizable if and only if there exists a basis S = {u,, u;, ..., u,} of ¥
for which

In such a case, T is represented by the diagonal matrix
D = diag (k,, k5, .-., k,)

relative to the basis S.
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The above observation leads us to the following definitions and theorems which are analogous to the

definitions and theorems for matrices discussed in Chapter 8.
A scalar J e K is called an eigenvalue of T if there exists a nonzero vector v € V for which

T(v) = iv
Every vector satisfying this relation is called an eigenvector of T belonging to the eigenvalue 4. The set
E, of all such vectors is a subspace of V called the eigenspace of i. (Alternatively, 1 is an eigenvalue of T

if Al — T is singular and, in this case, E; is the kernel of Al — T')
The following theorems apply.

Theorem 10.6: T can be represented by a diagonal matrix D (or T is diagonalizable) if and only if
there exists a basis S of V' consisting of eigenvectors of T. In this case, the diagonal
elements of D are the corresponding eigenvalues.

Theorem 10.7: Nonzero eigenvectors u,, u,, ..., u, of T, belonging, respectively, to distinct eigen-
values 4, 4,, ..., 4,, are linearly independent. (See Problem 10.26 for the proof.)

Theorem 10.8: T is a root of its characteristic polynomial A(z).

Theorem 109: The scalar A is an eigenvalue of T if and only if A is a root of the characteristic
polynomial A(r) of T.

Theorem 10.10: The geometric multiplicity of an eigenvalue A of T does not exceed its algebraic multi-
plicity. (See Problem 10.27 for the proof.)

Theorem 10.11: Suppose A is a matrix representation of T. Then T is diagonalizable if and only if 4 is
diagonalizable.

Remark: Theorem 10.11 reduces the investigation of the diagonalization of a
linear operator T to the diagonalization of a matrix 4 which was discussed in detail in

Chapter 8.

Example 10.5
(a) Let V be the vector space of real functions for which § = {sin 0, cos 0} is a basis, and let D be the differential
operator on V. Then
D(sin 0) = cos 0 = Osin 0) + (cos 0)
D(cos ) = —sin 8 = — I(sin 0) + O(cos 0)

1y.
Hence 4 = ( 0) is the matrix representation of D in the basis S. Therefore,

0
-1
Ay=2—(@tr At +1Al=02+1
is the characteristic polynomial of both A and D. Thus A and D have no (real) eigenvalues and. in particular,
D is not diagonalizable.

(b) Consider the functions ¢°", €%, ..., ¢*' where a,, a,, ..., q, are distinct real numbers. Let D be the differential
operator; hence D(e™) = q, ¢™. Accordingly, the functions e¢*' are eigenvectors of D belonging to distinct
eigenvalues. Thus, by Theorem 10.7, the functions are linearly independent.

(c) Let T:R?— R? be the linear operator which rotates each vector r € R? by an angle ) = 90° (as shown in Fig.
10-1). Note that no nonzero vector is a multiple of itself. Hence T has no eigenvalues and so no eigenvectors.
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Since the mapping ve—[v]s is onto K", we have P '[T]sPX =[T])s X for every X € K". Thus
P Y[T)P = [T]s.. as claimed.

DIAGONALIZATION OF LINEAR OPERATORS, EIGENVALUES AND EIGENVECTORS

10.20.

10.21.

Find the eigenvalues and linearly independent eigenvectors of the following linear operator on
RZ, and, if it is diagonalizable, find a diagonal representation D:  F(x, y) = (6x — y, 3x + 2y).

First find the matrix A which represents F in the usual basis of R? by writing down the coefficients of x

and y as rows:
6 —_
A= !
3 2

The characteristic polynomial A(t) of F is then
A)=12—(tr At + Al =2 =8t +15=(t — 3t — 5)
Thus A, = 3 and 4, = 5 are eigenvalues of F. We find the corresponding eigenvectors as follows:

3 —
(i) Subtract 4, = 3 down the diagonal of 4 to obtain the matrix M = (3 )
homogeneous system 3x — y = 0. Here v, = (1, 3) is a nonzero solution and hence an eigenvector of F

belonging to 4, = 3.

) which corresponds to the

1

3
x — y = 0. Here v, = (1, 1) is a nonzero solution and hence an eigenvector of F belonging to 4, = 5.

-1
(i) Subtract 4, = 5 down the diagonal of A to obtain M = ( 3) which corresponds to the system

Then S = {v,, v,} is a basis of R? consisting of eigenvectors of F. Thus F is diagonalizable, with the matrix
30
tation D = .
representation (0 5)
Let L be the linear operator on R? which reflects points across the line y = kx (where k # 0). See
Fig. 10-2.

(a) Show that v, = (k, 1) and v, = (1, —k) are eigenvectors of L.
(b) Show that L is diagonalizable, and find such a diagonal representation D.

y

4

Gra) A

G(P)

v=kx

Fig. 10-2

(@) The vector v, = (k, 1) lies on the line y = kx and hence is left fixed by L, that is, L{v,) = v,. Thus v, is
an eigenvector of L belonging to the eigenvalue 4, = 1. The vector v, = (1, —k) is perpendicular to the
line y = kx and hence L reflects v, into its negative. that is, L{v,) = —v,. Thus v, is an eigenvector of
L belonging to the eigenvalue 4, = — 1.
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10.22.

10.23.

10.24.

10.25.
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(b) Here S = {v,, v,} is a basis of R? consisting of eigenvectors of L. Thus L is diagonalizable with the

1 0
diagonal representation (relative to 8) D = (0 _ l)'

Find all eigenvalues and a basis of each eigenspace of the operator T : R? — R? defined by
T(x,y,2) = 2x + y, y — 2, 2y + 42). Is T diagonalizable? If so, find such a representation D.

First find the matrix A which represents T in the usual basis of R? by writing down the coefficients of
X, y. z as rows, and then find the characteristic polynomial A(r) of 7. We have

2 I 0 r-2 -1 Q
A=[T1=] 0 1 -1}|andsod(n=1tI-A'=] 0 -1 1 |=@-2»-3)
0 2 4 0 -2 t-4

Thus A = 2 and A = 3 are the eigenvalues of T.

We find a basis of the eigenspace E, of A = 2. Subtract A = 2 down the diagonal of A to obtain the
homogeneous system

¥ =0 ~0
-y- 2z =0 or Y __0
2y + 2z =0 vora=

The system has only one independent solution, e.g., x =1, y =0, 2 = 0. Thus u = (1, 0, 0) forms a basis of

the eigenspace E, .
We find a basis of the eigenspace E, of A = 3. Subtract A = 3 down the diagonal of A to obtain the

homogeneous system

- X+ ¥ =0
2‘ -0 xX—-y =0
Y = o 2y +z2 =0
2y +2 =0 .
The system has only one independent solution,e.g, x =1,y =1,z= —2 Thusv = (1, 1, —2) forms a basis

of the eigenspace E,.
Observe that T is not diagonalizable, since T has only two linearly independent eigenvectors.

Show that O is an eigenvalue of T if and only if T is singular.

We have that 0 is an eigenvalue of T if and only if there exists a nonzero vector v such that
T(v) = Ov = 0, i.e, if and only if T is singular.

Suppose 4 is an eigenvalue of an invertible operator T. Show that 2 ! is an eigenvalue of T7!.

Since T is invertible, it is also nonsingular; hence, by Problem 10.23 4 3 0.
By definition of an eigenvalue, there exists a nonzero vector v for which T(v) = Av. Applying T~ to
both sides, we obtain v = T~ '(Av) = AT " (v). Hence T '(v) = 2" '»; that is, 1~ ! is an eigenvalue of T~1.

Suppose dim V =n. Let T:V — V be an invertible operator. Show that 77! is equal to a
polynomial in T of degree not exceeding n.

Let m(t) be the minimum polynomial of 7. Then m{t) =t" + a,_ "' + -+ + a,t + ay, where r < n.
Since T is invertible, a, 7 0. We have

mTy=T +a,_, T '+ +a,T+a,l=0
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10.26.

10.27.
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Hence
1 1
—— (T '+a,_,T"*+ - +a,)T=1 and T V= ——(T"'4a, T2+ +a,D)
g o

Prove Theorem 10.7.

The proof is by induction on n. If n = 1, then u, is linearly independent since u, # 0. Assume n > 1.
Suppose

au, +auy + - +a,u,=0 n
where the a, are scalars. Applying T to the above relation, we obtain by linearity
a, Tu)+a, Tuz) + - +a,T(u,)=TO)=0

But by hypothesis T(u;) = 4;u; ; hence

a Ay +ayduy + - +a,hu, =0 2)
On the other hand, multiplying (/) by 4,.

a, A uy + aydauy + - +a,du, =0 3
Now subtracting (3) from (2),

ay(A, — AJuy + ay(2y — AJuy + -+ a, Ay y — Ay =0

By induction, u,, u,, ..., u,_, are linearly independent; hence each of the above coefficients is 0. Since the A
are distinct, 4, — A, # 0 for i # n. Hence a, = --- = a,_, = 0. Substituting this into ({) we get a,u, =0, and
hence a, = 0. Thus the u; are linearly independent.

Prove Theorem 10.10.

Suppose the geometric multiplicity of A is r. Then the eigenspace E, contains r linearly independent
eigenvectors v,, ..., v,. Extend the set {v,} to a basis of Vsay: {v,, .... v,. wy, ..., w}. We have
T(v,)= 4v;
T(v,) = Avy

T(v,) = Av,
Twy)=a, vy + - +ay,v,+byw +--- +by,w,
T(wy) = a3,0; + - +az v, + byywy + - + byw,

T(w)=a,vy +---+agv, + bgwy +---+b,w

The matrix of T in the above basis is

A0 01ay, ay gy
0 4 O:alz Q22 as2
1
............. R
00 Ala, ay a, ).I,: A
M=o =l-ca--
0 0 0,b,y by b, O:B
00 0.1bys by, b,,
i
............ e
0 0 O:bls bls bss

where 4 = (a,)" and B = (b;)".

Since M is a block triangular matrix, the characteristic polynomial of A1,, which is (t — A)", must divide
the characteristic polynomial of M and hence that of 7. Thus the algebraic multiplicity of 2 for the operator
T is at least r, as required.
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10.28. Let {v,,..., v,} be a basis of V. Let T : V — V be an operator for which T(v,) = 0, T(v;) = a,,v,,
T(v3) = ayv, + @z, 05, ..., Tv) =a,,v, + -+ + a, ,- U, - Show that T" = 0.

It suffices to show that
Tiv) =0 )
forj = 1,..., n. For then it follows that
Tv) = T {(Tip)) = T"H0) = 0, for j=1,...,n

and, since {v, ..., v,} is a basis, T" = 0.
We prove () by induction on j. The case j = 1 is true by hypothesis. The inductive step follows
(forj=2,...,n) from
THv) = TN T = T Mapo, + - +a;,5-40;-0)
=ap T o)+ +a;;, T (v;)
=a;0+--+a;; 0=0

Remark: Observe that the matrix representation of T in the above basis is triangular with
diagonal elements 0:

0 a,, ay Gyt
0 0 a, d,y
0 0 0 an. n-1
0 0 0 0

MATRIX REPRESENTATIONS OF LINEAR MAPPINGS
10.29. Let F : R® - R? be the linear mapping defined by F(x, y, z) = (3x + 2y — 4z, x — Sy + 32).
(a) Find the matrix of F in the following bases of R3 and R?:
S={w, =, 1, hw,=(1,1,0), wy =(1, 0, 0)} S ={u,=(1, 3), u, =(2, 5)}
(b) Verify that the action of F is preserved by its matrix representation; that is, for any v € R3,
[FIsvls = [F)ls
(@) From Problem 10.2, (a, b) = (—5a + 2bju, + (3a — b)u,. Thus

Fw)=F1,1, )=, ~1)= —Tu, + 4u,
Flwy)) = F(1,1,0) =(5, ~4) = —33u; + 19,
F(wy) = F(1,0,0) =3, 1) = —13u, + 8u,

Write the coordinates of F(w,), F(w,), F(w,) as columns to get

[FS = (—7 —-33 —13)

4 19 8
() Ifv=(x,y, z) then, by Problem 10.3, v = zw, + (y — z)w, + (x — y)w,. Also,
Fo) =(3x+ 2y — 4z, x — 5y + 3z) = (—13x — 20y + 262)u, + (Bx + 11y — 152)u,

—13x — 20y + 26z

Hence [Lls=(zy~zx—y" and [F(v)]s~=( 8x+l1y-—152)

-7 —33 _13) z (—l}x—20y+26z
y—z|=

4 19 8 8x+11y—15z)=m"’]s'

Thus [FEv)s = (
x—y



